Измерение диффузного потока нейтрино на основе данных нейтринного телескопа Baikal-GVD

А. В. Аврорин,² А. Д. Аврорин,² В. М. Айнутдинов,² В. А. Аллахвердян,¹ З. Бардачова,³ И. А. Белолаптиков,¹

И. В. Борина, ¹ Н. М. Буднев, ⁴ А. Р. Гафаров, ⁴ К. В. Голубков, ² Н. С. Горшков, ¹ Т. И. Гресь, ⁴ Р. Дворницки,

³ Ж.- А. М. Джилкибаев,^{2,*} В. Я. Дик,^{1,5} Г. В. Домогацкий,² А. А. Дорошенко,² А. Н. Дячок,⁴ Т. В. Елжов,¹

Д. Н. Заборов,² В. К. Кебкал,⁷ К. Г. Кебкал,⁷ В. А. Кожин,⁸ М. М. Колбин,¹ К. В. Конищев,¹

А. В. Коробченко,¹ А. П. Кошечкин,² М. В. Круглов,¹

В. Ф. Кулепов,⁹ Ю. М. Малышкин,¹ М. Б. Миленин,² Р. Р. Миргазов,⁴

В. Назари,¹ Д. В. Наумов,¹ Д. П. Петухов,² Е. Н. Плисковский,¹ М. И. Розанов,¹⁰

В. Д. Рушай,¹ Е. В. Рябов,⁴ Г. Б. Сафронов,² Д. Сеитова,^{1,5} А. Э. Сиренко,¹ А. В. Скурихин,⁸

А. Г. Соловьев,¹ М. Н. Сороковиков,¹ А. П. Стромаков,² О. В. Суворова,²,**

В. А. Таболенко,⁴ Л. Файт, 6 А. Хатун,³ Е. В. Храмов,¹ Б. А. Шайбонов,¹ М. Д. Шелепов,² Ф. Шимковиц,^{3,6}

И. Штекл,⁶ Э. Эцкерова,³ Ю. В. Яблокова¹

(Коллаборация Baikal-GVD)

*djilkib@yandex.ru **osouvorova@gmail.com

¹ Объединенный институт ядерных исследований, Дубна, 141980, Россия

² Институт ядерных исследований РАН, Москва, 117312, Россия

³ Университет имени Комениуса, Братислава, 81499, Словакия

⁴ Иркутский государственный университет, Иркутск, 664003, Россия

⁵ Институт ядерной физики Министерства энергетики Республики Казахстан, Алматы, 050032, Казахстан

⁶ Чешский технический университет, Институт экспериментальной и прикладной физики, CZ-11000, Прага, Чешская Республика

⁷ *Компания EvoLogics GmbH, Берлин, 13355, Германия*

⁸ НИИ ядерной физики им. Д. В. Скобельцына Московского государственного университета

им. М. В. Ломоносова, Москва, 119991, Россия

⁹ Нижегородский государственный технический университет,

Нижний Новгород, 603950, Россия

¹⁰ Санкт-Петербургский государственный морской технический университет

Санкт-Петербург, 190008, Россия

(Поступила в редакцию: 25 ноября 2022 года; принята к публикации: 10 января 2023 года; опубликована: 21 февраля 2023 года.)

В статье представлен первый анализ диффузного потока космических нейтрино, наблюдаемого нейтринным телескопом Baikal-GVD. При анализе каскадных событий, полученных Baikal-GVD в 2018–2021 гг., было обнаружено значительное превышение событий над ожидаемым атмосферным фоном. Это превышение согласуется с диффузным потоком космических нейтрино высоких энергий, наблюдаемым обсерваторией IceCube. Предположение нулевого космического потока было исключено на уровне значимости 3,05 в предположении модели с одностепенным спектром потока астрофизических нейтрино с равновесным вкладом каждого из ароматов нейтрино найдены следующие наилучшие значения фитирования: показатель спектра $\gamma_{astro} = 2,58^{+0,27}_{-0,33}$ и нормировка потока $\phi_{astro} = 3,04^{+1,52}_{-1,27}$ на каждый аромат нейтрино при энергии 100 ТэВ.

DOI: 10.1103/PhysRevD.107.042005

І. ВВЕДЕНИЕ

Наблюдаемый в настоящее время на Земле диффузный поток нейтрино высоких энергий образовался в результате нейтринного излучения различных источников начиная с далеких космологических эпох по сегодняшний день. Среди возможных источников высокоэнергетичных нейтрино — галактические и внегалактические объекты, такие как остатки сверхновых и активные

ядра галактик [1,2]. При традиционном подходе [3–7], лежащем в основе большого количества теоретических моделей, которые объясняют процесс генерации потоков нейтрино в источниках космических лучей, предполагается, что нейтрино рождаются в основном во время распада заряженных пионов в *pp*- и *ру*-взаимодействиях. В таком случае нейтринный поток, излучаемый источником, состоит из нейтрино разных ароматов в соотношении $v_e: v_\mu: v_\tau \approx 1:2:0$. Нейтрино осциллируют, и соотношение ароматов с расстоянием от источника меняется. Так как длина осцилляций значительно меньше, чем характерные расстояния от источника до детектора, соотношение ароматов становится равновесным $v_e: v_{\mu}: v_{\tau} \approx 1:1:1$ [8,9].

Нейтринные телескопы детектирует нейтрино путем регистрации черенковского излучения, вторичными частицами, рожденными в нейтринных вызванного взаимодействиях. Bo взаимодействиях мюонных нейтрино через канал заряженного тока рождаются долгоживущие мюоны, которые проходят несколько километров сквозь толщу воды или льда и оставляют в детекторе характерный трек. Точность восстановления треков высокоэнергетичных мюоноподобных событий обычно лучше 1°. Взаимодействия нейтрино через канал нейтрального тока и взаимодействия электронных и тау-нейтрино через канал заряженного тока в основном вызывают каскалы адронных и электромагнитных ливней заряженных частиц. Для стандартного нейтринного телескопа эти ливни квазиточечны, хотя инициируемое ими черенковское излучение в высшей степени анизотропно. Разрешение по направлению для каскадов обычно составляет несколько градусов (для экспериментов в морях или озерах). Высокое энергетическое разрешение (10-30%) и низкий фон атмосферных нейтрино — преимущества детектирования по каскадному каналу (в сравнении с детектированием трека). Каскадный канал обеспечивает эффективное измерение энергозависимого потока астрофизических нейтрино и определение его параметров.

В 2013 году обсерватория IceCube обнаружила диффузный поток астрофизических нейтрино высоких энергий [10]. Для изучения диффузного потока были использованы разные массивы данных IceCube: выборка нейтрино высоких энергий, включающая и треки, и каскады с вершинами взаимодействий внутри инструментального объема детектора [11], выборка восходящих треков (в основном мюонные нейтрино) [12], выборка каскадных событий (в основном электронные и таунейтрино) [13] и выборка треков, которые берут свое начало внутри инструментального объема детектора [14]. Поток анализировался с использованием данных по каскадным событиям, набранным обсерваторией IceCube за шесть лет [13], он согласуется с изотропной моделью с одностепенным

спектром $\gamma = 2,53\pm0,07$ и нормировкой потока на каждый тип нейтрино $\phi_{astro} = 1.66^{+0.25}_{-0.27}$ при $E_0 = 100$ ТэВ. О небольшом превышении высокоэнергетичных событий, согласующемся с диффузным нейтринным потоком IceCube, заявила и коллаборация ANTARES [15,16], правда со статистической значимостью менее 2 σ .

Целью байкальского гигатонного детектора Baikal-GVD — глубоководного черенковского детектора кубокилометрового масштаба, строящегося на озере Байкал, — является регистрация нейтрино с энергиями от нескольких ТэВ до десятков ПэВ [17]. Первоочередная физическая задача установки Baikal-GVD — измерить и исследовать поток нейтрино астрофизического происхождения, наблюдаемый обсерваторией IceCube, используя иные систематические неопределенности и данные наблюдений иной части небесной сферы.

Установка Baikal-GVD состоит из кластеров — структурных элементов, каждый из которых соединен с береговой станцией отдельным электрооптическим кабелем. Каждый кластер — независимая установка с 288 светочувствительными оптическими модулями. Модульная структура телескопа позволила начать проводить исследования уже на ранних этапах развертывания детектора. Первый полномасштабный кластер Baikal-GVD был развернут в апреле 2016 года. В период с 2017 по 2022 год были установлены и введены в эксплуатацию еще девять кластеров — общее количество оптических модулей превысило 2800 штук. На сегодня скорость развертывания установки около двух кластеров в год.

У коллаборации Baikal-GVD многолетний опыт в области поиска диффузного потока нейтрино с использованием каскадного канала [18–20]. В данной работе мы представляем результаты первого

измерения потока астрофизических нейтрино на основе каскадных событий по данным Baikal-GVD за 2018–2021 гг.

ІІ. НЕЙТРИННЫЙ ЭКСПЕРИМЕНТ ВАІКАL-GVD

Нейтринный телескоп Baikal-GVD расположен в южной части озера Байкал на расстоянии порядка 4 км от берега (51°50'N, 104°20'E). Глубина озера в месте развертывания телескопа 1366 м. Монтаж новых кластеров телескопа производится с середины февраля по начало апреля: в течение 7–8 недель в году, когда на поверхности озера образуется крепкий ледовый покров. При длине волны λ = 480–500 нм длина поглощения света равна $L_a = 21-23$ м, а длина рассеяния составляет Ls = 60-80 м. Сезонные изменения в длине поглощения света обычно не превышают 5%. Рассеяние света в байкальской воде строго анизотропно, косинус среднего угла рассеяния составляет порядка 0,9 [21,22]. Типичная скорость счета фоновых сигналов от люминесценции воды равна 20–40 кГц, она зависит от глубины [23]. Эти фоновые сигналы, как правило, представляют собой сигналы одиночных фотоэлектронов. Критерии отбора наименьшего допустимого заряда сигналов, регистрируемых оптическими модулями, Q > 1,5 ф. э. обеспечивает подавление шумовых импульсов от люминесценции воды как минимум на один порядок.

Структура и основные характеристики системы сбора данных телескопа подробно описаны в других работах [17,24]. В каждом оптическом модуле размещены десятидюймовый фотоэлектронный умножитель (ФЭУ) с высокой квантовой эффективностью фотокатода (Hamamatsu R7081-100), блок высокого напряжения и фронтенд-электроника. Оборудование заключено в сверхпрочную стеклянную сферу. Оптические модули крепятся к вертикальным гирляндам. Гирлянда состоит из 36 оптических модулей, 3 модулей управления секцией и одного модуля гирлянды. Модули расположены вдоль гирлянды на расстоянии 15 м друг от друга на глубинах 750–1275 м от поверхности озера. Один модуль управления секцией обслуживает группу из 12 оптических модулей: обеспечивает модули питанием и оцифровывает сигналы от ФЭУ с временным шагом 5 нс. Модуль гирлянды выполняет функцию центра распределения питания и коммуникации с модулями управления секцией.

Рис. 1. Десять кластеров установки Baikal-GVD в конфигурации 2022 года. Также изображены станции с калибровочными лазерными источниками света и экспериментальные гирлянды. Год строительства каждого кластера указан справа

Каждый кластер установки Baikal-GVD состоит из 8 гирлянд (см. Рис. 1): одной центральной и семи периферийных, расположенных в форме шестигранника. Расстояние между центральной

гирляндой и любой из семи периферийных порядка 60 м. Расстояние между центрами кластеров 250–300 м.

III. АНАЛИЗ ДАННЫХ

Поиск астрофизических нейтрино высоких энергий при помощи каскадных событий включает отбор и реконструкцию ливней высоких энергий, рожденных в результате нейтринных взаимодействий внутри эффективного объема детектора. Критерии отбора переменных качества были оптимизированы с помощью моделирования Монте-Карло и откалиброваны с использованием набора данных за 2016–2017 гг. В данной работе мы анализировали только сигналы с зарядом Q > 1,5 ф. э. Такой отбор обеспечивает значительное подавление импульсов шума, создаваемого люминесценцией воды. Для дальнейшего подавления импульсов шума были выбраны события с множественностью сработавших оптических модулей $N_{\rm hit} > 7$ на трех или более гирляндах и было поставлено условие, что сигналы должны удовлетворять принципу причинности [24].

Реконструкция энергии, направления и координат вершин ливней высоких энергий проходит в

два этапа [25]. На первом этапе координаты вершины ливня \vec{r}_{sh} реконструируются с помощью минимизации функции x² с использованием информации о времени, полученной на основе отобранных сигналов. Предполагается, что ливень — точечный источник света. На втором этапе энергия ливня ($E_{\rm sh}$) и направление (θ ; ϕ) восстанавливаются методом максимального правдоподобия с координат ливня, реконструированных на использованием первом этапе. Некорректно восстановленные события отбрасываются применением критериев отбора событий, включая значения χ^2_t и функцию максимального правдоподобия, а также множественность срабатывания оптических модулей N hit [19]. Точность восстановления энергии ливней и направления оценивается с использованием моделирования Монте-Карло отдельного кластера Baikal-GVD [20]. Точность реконструкции энергии существенно зависит от энергии каскада, его положения и ориентации относительно кластера и обычно варьируется в интервале 10%-30%. Точность реконструкции направления ливня также зависит от энергии ливня, его положения и ориентации и составляет 2°-4° (медианное значение) [20].

Нами применялись программные пакеты Baikal-GVD, предназначенные для моделирования Монте-Карло. Программа CORSIKA7.74 была использована для моделирования фона космических лучей [26]. Использовался протонный спектр, предложенный в [27]. Первичное взаимодействие протонов в атмосфере Земли моделировалось на основе модели SIBYLL 2.3d [28]. Моделирование распространения мюонов в воде по направлению к детектору проводилось на основе программы MUM [29]. Эффективность регистрации нейтринных событий оценивалась моделированием прохождения нейтрино сквозь Землю, а также моделированием взаимодействия внутри чувствительного объема установки с использованием сечений нейтрино из [30, 31], сечений распада тау-лептонов из [32] и модели Земли из [33]. Моделирование отклика телескопа на черенковское излучение ливней от нейтринных взаимодействий проводилось с учетом развития ливня в воде, поглощения света, рассеяния и дисперсии света в воде.

Эффективность отбора астрофизических нейтринных событий была протестирована в предположении потока с равным количеством нейтрино и антинейтрино и с равной долей каждого аромата нейтрино у поверхности Земли: ($v_e : v_\mu : v_\tau$) = 1 : 1 : 1. В качестве базового параметра был выбран поток однофлейворных нейтрино (1f), который был представлен коллаборацией IceCube в работе [34]:

$$\Phi_{\nu+\bar{\nu}}^{1f} = 2.06 \times 10^{-18} \left(\frac{E_{\nu}}{10^5}\right)^{-2.46} \left(\frac{1}{\text{GeV} \cdot \text{cm}^2 \cdot \text{sr} \cdot \text{s}}\right).$$
(1)

Поток обычных атмосферных нейтрино от распадов пионов и каонов был смоделирован согласно [35]. Прямые атмосферные нейтрино были смоделированы с помощью модели BERSS (Bhattacharya–Enberg–Reno–Sarcevic–Stasto; модели Бхаттачарья–Энберг–Рено–Сарчевич–Стасто) [36].

IV. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для поиска нейтрино астрофизического происхождения использовались данные установки Baikal-GVD, полученные с апреля 2018 года по март 2022 года. Телескоп функционировал в конфигурации из трех кластеров в 2018–2019 гг., пяти — в 2019–2020 гг., семи — в 2020–2021 гг, с апреля 2021 года по март 2022 года телескоп состоял из восьми кластеров. В данной работе представлены результаты анализа данных отдельных кластеров как самостоятельных установок. С помощью базового триггера телескопа была сформирована выборка из 3,49 х 10¹⁰ событий. После применения методик подавления шумовых сигналов, реконструкции каскадов и отбора событий по параметрам качества реконструкций была сформирована выборка из 14328 каскадов с восстановленной энергией $E_{\rm sh} > 10$ ТэВ и множественностью срабатывания оптических модулей $N_{\rm hit} > 11$.

А. Анализ наблюдения всего неба

С использованием того же алгоритма, как и в нашем предыдущем анализе [20], были отобраны события каскадов высоких энергий со множественностью срабатываний оптических модулей $N_{\rm hit} > 19$ и восстановленной энергией $E_{\rm sh} > 70$ ТэВ и применены дополнительные критерии отбора, подавляющие сигналы от атмосферных мюонов [37]. Доля фоновых сигналов от атмосферных мюонов в выборке ожидается на уровне 50%. В результате дополнительно к 10 событиям из набора данных за 2018–2020 гг. [37] были выделены еще шесть событий из данных за 2021 год. Всего от моделирования фона ожидается $8,2 \pm 2,0$ (сист.) событий (7,4 от атмосферных мюонов и 0,8 от атмосферных нейтрино), а также 5,8 событий от наиболее вероятных значений фитирования астрофизического потока, полученного в данной работе (см. Раздел IV В). Влияние неопределенности отклика детектора на сигнал и фон оценивается варьированием вводных параметров в моделированиях Монте-Карло. Неопределенность длины поглощения света составляет порядка ±5%. Такие вариации приводят к изменению эффективности регистрации высокоэнергетичных каскадов на 16%–18% и изменяют энергетическую шкалу в логарифме энергии каскадов на ± 0.05 . В то же время неопределенность восстановления направления каскадов слабо зависит от изменений длины поглощения. Чувствительность оптических модулей варьируется в пределах $\pm 10\%$. Также учитывается $\pm 15\%$ -ная неопределенность нормировки компоненты атмосферных нейтрино [35]. В разделе IV В показано, что общая статистическая и систематическая неопределенность нормировки наиболее вероятных значений фитирования астрофизического потока составляет порядка 40%-50%. При заданном верхнем пределе на нормировку потока прямых атмосферных нейтрино порядка 5,0 х Φ_{BERSS} (предположение из анализа каскадов IceCube, проведенном на основе данных за шесть лет) неопределенность нормировки прямого нейтринного потока может дать неопределенность нормировки наиболее вероятных значений фитирования астрофизического потока менее 8%. По этой причине эта неопределенность не была включена в данный анализ. Независимые неопределенности суммировались квадратично при проведении общей оценки. С учетом систематических эффектов согласно методу [38] значимость превышения была определена как 2,22σ, исключая нулевую гипотезу космического потока на уровне достоверности 97.36%.

На Рис. 2 показаны реконструированные распределения по энергии ливня и по косинусу зенитного угла (черные точки). Также изображены распределения моделирований Монте-Карло с вкладами от сигналов и фона. Симулированные гистограммы расположены друг над другом (обозначенные цветом области). Распределение данных по энергии и зенитному углу согласуются с

ожиданиями для базового потока нейтрино астрофизического происхождения (IceCube) (1). Среди фоновых событий в нисходящей области доминируют группы атмосферных мюонов, в то время как атмосферные нейтрино субдоминантны более чем на порядок величины. Необходимо отметить, что эффект от подавления атмосферных нейтрино отбрасыванием мюонов космических лучей, которые продуцируются теми же распадающимися в атмосфере родительскими мезонами [39], может привести к дополнительному подавлению фона от атмосферных нейтрино.

Рис. 2. Реконструированные распределения по энергии ливня (верхние гистограммы) и по косинусу зенитного угла (нижние гистограммы), полученные в анализе наблюдений всего неба. События обозначены черными точками со статистической неопределенностью. Обозначенные цветом области показывают ожидаемый вклад фона атмосферных нейтрино (коричневый цвет) и атмосферных мюонов (желтый цвет), а также потока астрофизических нейтрино наиболее вероятных значений, полученного в данной работе (оранжевый цвет)

В проанализированный набор данных включено событие с энергией порядка 1 ПэВ. Это было первое событие с энергией такого масштаба, отобранное из данных установки Baikal-GVD. Нулевая гипотеза космического потока была исключена на уровне достоверности 99,46% для регистрации такого рода событий (значимость превышения 2,78°). Три события в рамках анализа наблюдения

всего неба были реконструированы как каскады из-под горизонта. Восстановленные параметры 16 выделенных событий приведены в Таблице I.

Таблица I. Параметры 16 высокоэнергетичных каскадных событий, выделенных в анализе наблюдения всего неба: время наблюдения — в юлианских днях, восстановленная энергия, зенитный угол, галактическая долгота и широта, восхождение и склонение, радиус круга неопределенности, содержащего сигнал на уровне достоверности 50% и 90%, расстояние от вершины ливня до центральной гирлянды кластера. В обозначении события Baikal-GVD (колонка слева) зашифрована дата регистрации события в формате год-месяц-день

Event name	MJD	E _{sh} TeV	θ deg	l deg.	b deg.	RA deg.	Dec deg.	50% unc. deg.	90% unc. deg.	ρ meter
GVD181010CA	58401.77863426	105	37	142.6	30.4	118.2	72.5	2.3	4.5	70
GVD181024CA	58415.88952546	115	73	164.1	-54.4	35.4	1.1	2.5	4.5	90
GVD190216CA	58530.03428241	398	64	141.4	5.8	55.6	62.4	3.3	6.9	101
GVD190517CA	58620.31961806	1200	61	99.9	54.9	217.7	57.6	2.0	3.0	96
GVD190523CA	58626.44462963	91	109	200.4	-58.4	45.1	-16.7	2.2	4.5	49
GVD200117CA	58865.65752315	83	50	190.0	64.0	163.6	34.2	2.1	3.3	73
GVD190604CA	58638.82969907	129	50	132.7	0.1	33.7	61.4	3.5	5.5	52
GVD200826CA	59087.58636574	110	71	21.0	-19.2	295.3	-18.9	2.0	7.9	84
GVD201222CA	59205.54451389	74	92	58.3	63.1	223.0	35.4	1.8	5.1	19
GVD210117CA	59231.02799769	246	57	168.8	38.8	131.9	50.2	1.6	3.6	80
GVD210409CA	59313.79668981	263	60	73.3	-6.1	310.0	31.7	3.3	6.3	76
GVD210418CA	59322.94855324	224	115.5	196.8	-14.6	82.4	7.1	3.0	5.8	70
GVD210515CA	59349.73187500	120	80.2	175.2	17.9	103.4	41.2	2.8	5.2	68
GVD210716CA	59411.42329861	110	58.7	135.5	7.1	46.0	66.7	2.1	4.1	93
GVD210906CA	59464.98151620	138	67.7	202.2	-45.3	57.8	-12.0	2.0	5.6	98
GVD220221CA	59631.60434028	120	67.7	276.9	77.5	187.2	15.8	3.2	5.8	62

В. Анализ восходящих ливней

Используя в рамках анализа события только восходящих направлений, можно добиться эффективного подавления фона от атмосферных мюонов, улучшить тем самым чистоту выборки нейтрино и расширить анализ к области более низких энергий.

В качестве кандидатов на астрофизические нейтрино были выбраны каскадные события с восстановленной энергией $E_{\rm sh} > 15$ ТэВ, множественностью откликов оптических модулей $N_{\rm hit} > 11$ и реконструированным косинусом зенитного угла соз $\theta < -0.25$. Всего из набора данных за 2018–2021 гг. было выделено 11 событий, при этом ожидаемые события от атмосферного фона составляют 3.2 ± 1 (2,7 от обычных и прямых атмосферных нейтрино и 0,5 событий от некорректной реконструкции атмосферных мюонов). Учитывая систематические эффекты (см. Раздел IV А), согласно методу из [38], значимость превышения оценивалась в 3,05 σ с исключением нулевой гипотезы космического потока на уровне достоверности 99,76%. Параметры 11 восходящих ливней приведены в Таблице II. Медианное значение погрешности реконструкции направления каскадов варьируется от 1,9° до 5,4°. Два события с самыми высокими реконструированными энергиями — 91 ТэВ и 224 ТэВ — также представлены в обсуждаемой ранее высокоэнергетичной выборке данных со всего неба.

Таблица II. Параметры 11 каскадных событий с вершиной в нижней полусфере: время наблюдения — в юлианских днях, восстановленная энергия, зенитный угол, галактическая долгота и широта, восхождение и склонение, радиус круга неопределенности, содержащего сигнал на уровне достоверности 50% и 90%, расстояние от вершины ливня до центральной гирлянды кластера. В обозначении события Baikal-GVD (колонка слева) зашифрована дата регистрации события в формате год-месяц-день.

Event name	MJD	E _{sh} TeV	θ deg.	l deg.	b deg.	RA deg.	Dec deg.	50% unc. deg.	90% unc. deg.	ρ meter
GVD180504CA	58242.5739004	25.1	111.7	299.1	3.6	185.4	-59.0	3.9	6.9	28
GVD190523CA	58626.44462963	91.0	109.0	200.4	-58.4	45.1	-16.7	2.2	4.5	49
GVD200614CA	59014.27202546	39.8	144.1	359.3	10.6	256.2	-23.6	3.4	6.8	108
GVD201112CA	59165.01353009	24.5	136.1	305.0	-15.1	202.2	-77.8	5.4	11.8	66
GVD210418CA	59322.94855324	224	115.5	196.8	-14.6	82.4	7.1	3.0	5.8	70
GVD210501CA	59335.45576389	64.6	112.3	223.4	-67.7	38.1	-28.9	2.6	12.6	109
GVD210506CA	59340.34252315	21.9	114.2	5.9	46.7	230.6	3.1	2.8	6.6	30
GVD210710CA	59405.56907407	24.5	115.5	139.8	-54.2	22.7	7.4	3.6	8.6	83
GVD210803CA	59429.58071759	20.9	136.9	321.0	-50.3	347.0	-63.0	1.9	4.1	41
GVD220121CA	59600.45934028	30.9	110.5	241.3	10.4	126.2	-19.5	3.4	7.1	49
GVD220308CA	59646.14655093	36.3	105.0	203.2	-35.2	67.3	-8.0	2.5	5.6	37

Для характеристики диффузного астрофизического потока нейтрино был проведен анализ измеренных 11 событий и ожидаемого количества фоновых событий. Изотропный диффузный поток астрофизических нейтрино $\Phi_{astro}^{\nu+\bar{\nu}}$ был параметризован в модели с одностепенным спектром в предположении равного количества нейтрино и антинейтрино и равных ароматов нейтрино на уровне Земли. Модель характеризуется спектральным индексом γ_{astro} и нормировкой ϕ_{astro} однофлейворного потока нейтрино в единицах Γ эВ⁻¹ см⁻² сек⁻¹ стер⁻¹:

$$\Phi_{\rm astro}^{\nu+\bar{\nu}} = 3 \times 10^{-18} \phi_{\rm astro} \left(\frac{E_{\nu}}{E_0}\right)^{-\gamma_{\rm astro}},\tag{2}$$

где $E_0 = 100$ ТэВ. Наилучшие значения фитирования параметров для наблюдаемых данных определены биновым методом максимального правдоподобия. В рамках этого подхода выборка данных разбивается на бины по восстановленной энергии ливней. Измеренное число n_i в каждом бине i сравнивается с моделью, которая предсказывает среднее значение λ_i в каждом бине в функции правдоподобия:

$$L = \prod_{i=1}^{N} \frac{e^{-\lambda_i} \lambda_i^{n_i}}{n_i!}.$$
(3)

Ожидаемое число λ_i дают астрофизические нейтрино и фон от атмосферных мюонов и атмосферных нейтрино. Для оценки λ_i использовались модельные данные космических сигналов и атмосферных фонов с различными параметрами воды и эффективностью оптических модулей. Соответственно, в данные шаблоны включены изменения эффективности регистрации и сдвиг по шкале энергии, как было указано в Разделе IV А. Основываясь на функции вероятности Пуассона (3), для сравнения количества наблюдаемых событий с предсказаниями модели Монте-Карло использовалась следующая тест-статистика (TS):

$$TS = -2\ln L + \sum_{k=1}^{\infty} \left(\frac{(g_k - g_k^0)}{\sigma(g_k)}\right)^2.$$
 (4)

Второе слагаемое в выражении (4) учитывает обсуждаемые выше систематические неопределенности, которые вводятся в состав тест-статистики как несущественный параметр по форме распределения Гаусса для приора g_k и отклонения ширины $\sigma(g_k)$ от центрального значения g_k^0 . Для определения наиболее вероятных значений фитирования параметров γ_{astro} и ϕ_{astro} применялся метод максимального правдоподобия. Данные параметры варьировались до тех пор, пока не был найден минимум выражения (4). Были получены следующие наилучшие значения фитирования параметров: спектральный индекс $\gamma_{astro} = 2,58^{+0,27}_{-0,33}$ и нормировка $\phi_{astro} = 3,04^{+1,52}_{-1,27}$ потока на каждый аромат нейтрино при $E_0 = 100$ ТэВ.

На Рис. 3 показано сравнение распределений по энергии ливней и по косинусу зенитного угла 11-ти событий и симулированных событий. Гистограммы атмосферного фона расположены друг над другом (обозначенные цветом области).

Рис. 3. Реконструированные распределения по энергии ливня (верхние гистограммы) и по косинусу зенитного угла (нижние гистограммы) были получены в анализе восходящих ливней. События обозначены черными точками со статистической неопределенностью. Также изображены распределение астрофизических нейтрино наилучшего значения фитирования (штриховая линия), ожидаемые распределения атмосферных мюонов (желтый цвет) и атмосферных нейтрино (коричневый цвет), а также сумма ожидаемых сигналов и распределения фона (оранжевая линия). Гистограммы атмосферного фона расположены друг над другом (обозначенные цветом области)

На Рис. 4 представлены параметры наиболее вероятных значений и контуры доверительных интервалов 68% для данного анализа ливней вместе с результатами других нейтринных телескопов

[11–16]. Измерения восходящих нейтринных каскадов Baikal-GVD согласуются с измерениями IceCube и измерениями нейтрино всех ароматов ANTARES.

Рис. 4. Параметры наиболее вероятного значения и контуры доверительных интервалов 68% (красная кривая) для гипотезы модели с одностепенным спектром, полученной при анализе восходящих ливней по данным Baikal-GVD. Другие параметры наиболее вероятного значения изображены для исследований первичных событий высоких энергий (оранжевая кривая) [11], каскадных событий (серая кривая) [13], изучения неупругости (пурпурная кривая) [14] и трековых событий (синяя кривая) [12] по результатам наблюдений IceCube и ANTARES, полученном в комбинированном анализе трековых и каскадных событий (зеленая кривая) [16]

С. Карта распределения событий Baikal-GVD на небесной сфере

На Рис. 5 показаны реконструированные точки распределения событий Baikal-GVD на небесной сфере и области неопределенностей каскадных событий, выделенных в анализе наблюдений всего неба (сплошные линии) и в анализе восходящих ливней (штриховые линии). Два восходящих события, общие для обеих выборок (GVD190523CA и GVD210418CA), обозначены штриховыми кругами. Следует отметить, что почти половина событий — фон от атмосферных мюонов и атмосферных нейтрино. Круги вокруг событий соответствуют вероятности регистрации 90% для каждого события. В целом, видно, что каскадные события распределены относительно изотропно по всей небесной сфере, что согласуется с доминированием внегалактических источников. Необходимо подчеркнуть, что изучение популяции источников с использованием каскадных событий может представлять определенные трудности из-за большой угловой неопределенности. Однако специальный поиск корреляций направлений прихода наиболее энергетичных событий с известными источниками нейтрино возможен. Наиболее убедительный кандидат на внегалактический нейтринный источник при E > 200 ТэВ, согласно IceCube, — TXS 0506 + 056 [40]. Интересным фактом является то, что направление прихода события восходящего нейтрино самых высоких энергий в данных Baikal-GVD (GVD210418CA, E = 224 ТэВ) согласуется с TXS 0506 + 056. В комбинированном анализе с радиоданными было найдено, что нейтринные события из TXS 0506 + 056 соотносятся с активностью данного источника в радиодиапазоне: полный анализ события представлен в отдельной, посвященной ему статье [41].

Рис. 5. Карта пространственного распределения высокоэнергичных ливней Baikal-GVD на небесной сфере (в экваториальной системе координат). Изображены точки наиболее вероятного значения и круги угловой неопределенности 90%. Штриховыми линиями обозначены события из-под горизонта (отобранные при анализе восходящих ливней, см. подраздел IV.2), сплошными линиями показаны события над горизонтом (отобранные при анализе данных со всей небесной сферы с исключением восходящих событий). Цветом обозначена энергия событий: зеленым — менее 100 ТэВ, синим — от 100 ТэВ до 200 ТэВ, красным — от 200 ТэВ до 1000 ТэВ и оранжевым — более 1 ПэВ. Галактическая плоскость изображена в виде серой кривой

V. ЗАКЛЮЧЕНИЕ

Представлены первые измерения потока нейтрино астрофизического происхождения на основе выборки каскадных событий, зарегистрированных нейтринным телескопом Baikal-GVD в Северном полушарии в 2018–2012 гг. Были проведены два анализа с использованием каскадных событий.

В первом случае была проанализирована выборка каскадов высоких энергий с энергией $E_{\rm sh}$ > 70 ТэВ со всех направлений небесной сферы. Всего в качестве кандидатов на нейтрино астрофизического происхождения было выделено 16 событий, в то время как от атмосферного фона ожидались 8,2 события. Оценка значимости превышения составляет 2,22 σ , нулевая гипотеза космического потока отклонена на уровне достоверности 97,36%.

Во втором анализе использовалась подвыборка восходящих ливней с энергией $E_{\rm sh} > 15$ ТэВ. В качестве кандидатов на астрофизические нейтрино были отобраны 11 событий при ожидании событий атмосферного фона 3,2±1. Значимость превышения над ожидаемыми событиями от атмосферного фона составила 3,05 σ . Чтобы получить информацию о потоке астрофизических нейтрино, было проведено глобальное фитирование этих нейтринных данных, в частности распределения энергии каскадов. Полученные значения показателя одностепенного астрофизического спектра $\gamma_{astro} = 2.58^{+0.27}_{-0.33}$ и нормировки потока на каждый аромат нейтрино при энергии $E_0 = 100$ ТэВ $\phi_{astro} = 3.04^{+1.52}_{-1.27}$ хорошо согласуются с предыдущими результатами, полученными при различных анализах данных IceCube и ANTARES. Представляя наши результаты, мы впервые подтверждаем наблюдение диффузного потока астрофизических нейтрино обсерватории IceCube со значимостью 3 σ .

БЛАГОДАРНОСТИ

Мы благодарим Дмитрия Семикоза, Сергея Троицкого, Юрия Ковалева, Александра Плавина и Никиту Косогорова за плодотворные дискуссии и сотрудничество. При обработке данных важную роль играла облачная вычислительная инфраструктура ОИЯИ. Данная работа выполнялась при поддержке государственного проекта «Наука» Министерства науки и высшего образования Российской Федерации, контракт №075-15-2020-778. Частично исследования были поддержаны Европейским проектным фондом по региональному развитию "Engineering Applications of

Microworld Physics" (CZ 02.1.01/0.0/0.0/16019/0000766) и Агентством по выделению грантов VEGA Словацкой Республики, контракт №1/0607/20.

- J. G. Learned and K. Mannheim, Annu. Rev. Nucl. Part. Sci. 50, 679 (2000).
- [2] J. K. Becker, Phys. Rep. 458, 173 (2008).
- [3] R. J. Protheroe and D. Kazanas, Astrophys. J. 265, 620 (1983).
- [4] D. Kazanas and D. C. Ellison, Astrophys. J. 304, 178 (1986).
- [5] M. Sikora, J. G. Kirk, C. M. Begelman, and P. Schneider, Astrophys. J. Lett. 320, L81 (1987).
- [6] F. W. Stecker, C. Done, M. H. Salamon, and P. Sommers, Phys. Rev. Lett. 69, 2738(E) (1992).
- [7] K. Mannheim and P. L. Biermann, Astron. Astrophys. 253, L21 (1992), https://adsabs.harvard.edu/pdf/1992A%26A..
 .253L..21M.
- [8] G. Learned and S. Pakvasa, Astropart. Phys. 3, 267 (1995).
- [9] H. Athar, C. S. Kim, and J. Lee, Mod. Phys. Lett. A 21, 1049 (2006).
- [10] M. Aartsen et al. (IceCube Collaboration), Science 342, 1242856 (2013).
- [11] R. Abbasi *et al.* (IceCube Collaboration), Phys. Rev. D 104, 022002 (2021).
- [12] R. Abbasi *et al.* (IceCube Collaboration), Astrophys. J. 928, 50 (2022).
- [13] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev. Lett. 125, 121104 (2020).
- [14] M. G. Aartsen *et al.* (IceCube Collaboration), Phys. Rev. D 99, 032004 (2019).
- [15] A. Albert et al. (ANTARES Collaboration), Astrophys. J. Lett. 853, L7 (2018).
- [16] L. Fusco and F. Versari (ANTARES Collaboration), Proc. Sci. ICRC2019 (2021) 891.
- [17] V. A. Allakhverdyan et al. (Baikal-GVD Collaboration), Phys. At. Nucl. 84, 1600 (2021).
- [18] V. Aynutdinov et al. (Baikal Collaboration), Astropart. Phys. 25, 140 (2006).
- [19] A. V. Avrorin *et al.* (Baikal Collaboration), Astron. Lett. 35, 651 (2009).
- [20] A. V. Avrorin et al. (Baikal-GVD Collaboration), J. Exp. Theor. Phys. 134, 399 (2022).
- [21] E. Ryabov et al. (Baikal-GVD Collaboration), Proc. Sci. ICRC2021 (2022) 1034.
- [22] A. Avrorin et al. (Baikal Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 693, 186 (2012).
- [23] R. Dvornický et al. (Baikal-GVD Collaboration), Proc. Sci. ICRC2021 (2022) 1113.
- [24] V. Allakhverdyan et al. (Baikal-GVD Collaboration), Eur. Phys. J. C 81, 1025 (2021).
- [25] B. Shaybonov *et al.* (Baikal-GVD Collaboration), Proc. Sci. ICRC2017 (2018) 962.
- [26] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, Technical Report No. FZKA 6019, Kernfor- schungszentrum Karlsruhe, 1998, 10.5445/IR/270043064.
- [27] T. K. Gaisser, T. Stanev, and S. Tilav, Front. Phys. (Beijing) 8, 748 (2013).
- [28] F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, and T. Stanev, Phys. Rev. D 102, 063002 (2020).
- [29] I. Sokalski, E. V. Bugaev, and S. I. Klimushin, Phys. Rev. D 64, 074015 (2001).
- [30] H. L. Lai, J. Huston, S. Kuhlmann, F. Olness, J. Owens, D. Soper, W. K. Tung, and H. Weerts, Phys. Rev. D 55, 1280 (1997).
- [31] R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic, As-tropart. Phys. 5, 81 (1996).
- [32] P. Lipari, Astropart. Phys. 1, 195 (1993).
- [33] A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Interiors 25, 297 (1981).
- [34] M. G. Aartsen *et al.* (IceCube Collaboration), Phys. Rev. D 91, 022001 (2015).
- [35] L. V. Volkova, Yad. Fiz. 31, 1510 (1980), https://inspirehep .net/literature/158105.
- [36] A. Bhattacharya, R. Enberg, M. H. Reno, I. Sarcevic, and A. Stasto, J. High Energy Phys. 06 (2015) 110.

- [37] V. A. Allakhverdyan et al. (Baikal-GVD Collaboration), Proc. Sci. ICRC2021 (2022) 1144.
- [38] J. Conrad, O. Botner, A. Hallgren, and C. Perez, Phys. Rev. D 67, 012002 (2003).
- [39] S. Schönert, T. K. Gaisser, E. Resconi, and O. Schulz, Phys. Rev. D 79, 043009 (2009).
- [40] M. G. Aartsen et al. (IceCube Collaboration), Science 361, eaat1378 (2018).
- [41] V. Allakhverdyan *et al.* (Baikal-GVD Collaboration), arXiv: 2210.01650.